Code: CE7T3
IV B.Tech - I Semester - Regular / Supplementary Examinations JANUARY - 2022

## ESTIMATION AND COSTING (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks

$$
11 \times 2=22 \mathrm{M}
$$

1. 

a) What are the different types of estimates?
b) State the units of measurement for various items related to Civil Engineering Works.
c) Differences between abstract and detailed estimate.
d) What are different deductions for the opening explain using with neat sketches?
e) Draw the typical load bearing wall cross section and label their parts.
f) Why bar bending schedule is required for RCC constructions works, explain with a bar bending schedule table?
g) What is security deposit and earnest money?
h) Define depreciation and list out various methods available for estimating the depreciation.
i) What is measurement book and state the importance?
j) Define standard data book and list out its importance in civil construction works.
k) What is balanced cut of excavation and explain it in detail?
PART - B

Answer any $\boldsymbol{T H R E E}$ questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. Explain the detailed specifications for the following
a) R.C.C. work.(1:1.5:3) for slab work.
b) Brick work(1:6) for super structure wall.
3. Two room building plan and cross section is shown in Figure1. From the drawings calculate quantities by using Long and short wall method
a) excavation of soil. 4 M
b) brick work for substructure and super structure.
c) RCC required for slab and lintels.



Figure-1
4. a) Calculate the quantity of steel and bar bending schedule required for an RCC column with footing from the following information.
i) Size of footing $4.5 \mathrm{~m} \times 4.5 \mathrm{~m} \times 1.2 \mathrm{~m}$
ii) Steel reinforcement in the footing (HYSD-Fe415 grade)
$16 \mathrm{~mm} \phi$ bars @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in both ways at bottom
$12 \mathrm{~mm} \phi$ bars @220mm c/c in both ways at top
Size of the column: $450 \mathrm{~mm} \times 450 \mathrm{~mm}$
Longitudinal reinforcement in the column: 12 numbers $30 \mathrm{~mm} \phi$ bars

Transverse reinforcement in the column (ties):
$8 \mathrm{~mm} \phi @ 150 \mathrm{~mm}$ c/c.
Height of the column from the footing top: 4.2 m
Assume suitable cover to reinforcement and necessary data.
b) First class brick work in super structure with $20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ brick with $1: 4$ cement sand mortar. Evaluate material and labour required for brick work with $1: 4$ cement mortar for $20 \mathrm{~m}^{3}$ of work.
5. What is valuation? Explain all methods used for evaluation of structures in detail with an example.
6. Estimate the quantity and cost of earth work for a road between two sections A and K ( 300 m ) with the following data by using trapezoidal and prismoidal methods. Formation width of the four lane road is 16 m at surface and side slopes of banking is 2.5:1 $(\mathrm{H}: \mathrm{V})$. The RL at section A is 157.40 m and road is downward gradient is 1 in 125 up to point $F$ and then the gradient changes to 1 in 80 downward gradient.

16 M

| Chainage <br> in 'm' | 0 | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | G | H | I | J | K |
| R.L of the <br> ground | 156.2 | 156.4 | 156.1 | 155.6 | 155.3 | 154.1 | 154 | 153.5 | 152.8 | 152.1 | 151.2 |

